#### AI-TOP

### An Al Tool to Predict Engagement and 'Meltdown' Events in Students with Autism

2020-1-UK01-KA201-079167

#### Mufti Mahmud

Associate Professor of Cognitive Computation Nottingham Trent University Nottingham, UK





#### Project Partnership

- Nottingham Trent University, UK
- Phoenix KM, Belgium
- NARHU, Bulgaria
- SoftQNR, Serbia
- Nottingham City Council, UK
- University of Thessaly, Greece























#### Project Background

- What is a 'meltdown'?
  - A meltdown is an intense response to overwhelming circumstances—a complete loss of behavioural control
  - People with Autism often have difficulty expressing when they are feeling overly anxious or overwhelmed, which leads to an involuntary coping mechanism—a meltdown
  - Common trigger points include:
    - Sensory Overload
    - Information Overload
    - Emotional Overload







#### Project Background

- What is a 'rumble stage'?
  - Initial stage of a tantrum, rage, or meltdown
  - Specific behavioural changes that may not appear to be directly related to a meltdown
  - Minor behaviours such as nail biting, tensing muscles, or otherwise indicating discomfort
  - Major behaviours such as withdrawing from others or threatening others verbally or physically.
  - Adult intervene is expected which include: "antiseptic bouncing," "proximity control," "support from routine," and "home base."

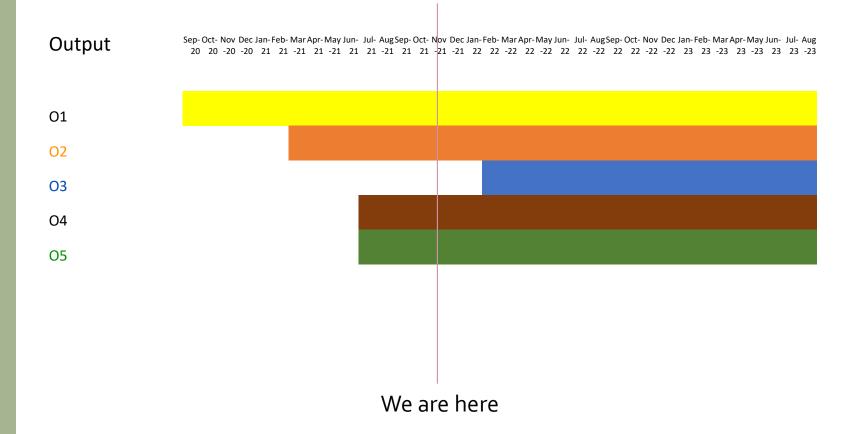




#### Project Summary

- The project has an iterative and incremental character, as it aims to develop:
  - a new innovative pedagogical methodology to provide a 'blueprint' on how AI technology can be introduced into classrooms for the benefit of students with Autism
  - an algorithm trained to infer the level of engagement of students with Autism and predict 'meltdown' events
  - an intuitive app for use by school staff and parents/carers with dashboard to give accessible visual feedback on these issues.




#### Project Outputs

- O1 Online Searchable Database
- O2 Transferred Mobile Engagement and Meltdown Measurement App
- O3 Optimisation of Autism Engagement and Meltdown framework
- O4 Handbook for Teachers and Parents
- O5 Pedagogical Framework for Students with Autism





#### Project Timeline







# O2 – Transferred Mobile Engagement and Meltdown Measurement App

T2.1: Al-driven algorithms to recognise whether a student with ASC is engaged even using unlabelled sensor data in the future.

T2.2: Observational Behavioural Checklists to label Arousal states ('rumble' and 'meltdown' events).


T2.3: Fine-tuning of the core AI "engine" for inference of engagement and to predict 'meltdown' events.

T2.4: Implementation of the Teacher/Parent facing Dashboard (Traffic Lights/Graph-over-Time).





### Candidate Algorithm: ML - Decision Tree



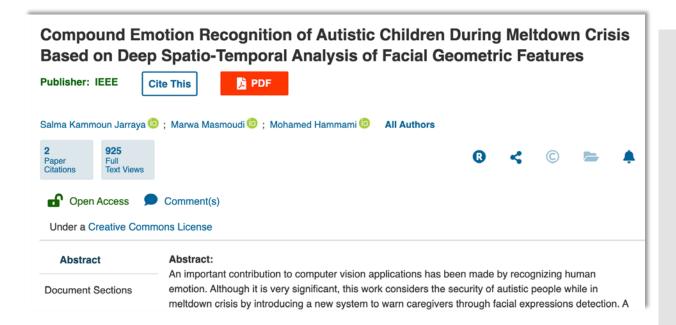
#### WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches

by Amir Mohammad Amiri 1,2,\*  $\[ igotimes \[ igotimes \] \]$ , Nicholas Peltier 2, Ocdy Goldberg 2, O Yan Sun 2, Anoo Nathan 3, O Shivayogi V. Hiremath 1 and O Kunal Mankodiya 2  $\[ igotimes \]$ 

- <sup>1</sup> Department of Physical Therapy, College of Public Health, Temple University, Philadelphia, PA 19140, USA
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
- <sup>3</sup> Smart Monitor Co., San Jose, CA 95119, USA
- \* Author to whom correspondence should be addressed.

Academic Editor: Sampath Parthasarathy

Healthcare 2017, 5(1), 11; https://doi.org/10.3390/healthcare5010011


Received: 14 December 2016 / Revised: 16 February 2017 / Accepted: 21 February 2017 / Published: 28 February 2017

- Decision Tree has been used
- 94.6% Accuracy
- Used smart watch
- Bagging methods were used

- Work with accelerometer data only
- Compound Emotion Recognition



#### Candidate Algorithm: Deep Learning (RNN)



- Deep Learning Using RNN
- 85.8% Accuracy

11

• Training Loss: 0.04%

- Work with Image only
- Compound Emotion Recognition!!
- Not explainable!





#### Candidate Algorithm: Deep Learning

(CNN, LSTM)



Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders



Nastaran Mohammadian Rad<sup>a,b,c,\*</sup>, Seyed Mostafa Kia<sup>d,e</sup>, Calogero Zarbo<sup>a</sup>, Twan van Laarhoven<sup>b</sup>, Giuseppe Jurman<sup>a</sup>, Paola Venuti<sup>f</sup>, Elena Marchiori<sup>b</sup>, Cesare Furlanello<sup>a</sup>

3 Fondazione Rruno Kessler Trento Italy

- Deep Learning Using CNN and LSTM
- Improved the Stereotypical Motor Movements (SMM) detection rate in real-world scenarios for unbalanced data
- Works with Stereotypical Motor Movements (SMMs) data
- SMM detection is problematic for its online adaptation!!
- The system has no access to the labels of incoming samples during usage by a new user.





## Candidate Algorithm: Deep Learning



- Deep Learning Using RCNN
- 93% Accuracy

13

- Work with Image only
- Run time is high
- Not explainable!





### Candidate Algorithms: A Comparison

#### **PLOS ONE**



PLoS One. 2019; 14(9): e0222907.

Published online 2019 Sep 25. doi: <u>10.1371/journal.pone.0222907</u>

PMCID: PMC6760799 PMID: 31553774

#### A comparison of machine learning algorithms for the surveillance of autism spectrum disorder

<u>Scott H. Lee</u>, Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation, Writing – original draft, Matthew J. Maenner, Conceptualization, Data curation, Project administration, Writing – review & editing, and Charles M. Heilig, Methodology, Supervision, Writing – review & editing

| Model                             | Accuracy (95% CI)        |
|-----------------------------------|--------------------------|
| Latent Dirichlet Allocation (LDA) | 58.6 (55.0, 62.2)        |
| Multinomial Naive Bayes (MNB)     | 77.3 (73.9, 80.7)        |
| Support Vector Machine (SVM)      | 84.0 (80.8, 87.2)        |
| Latent Semantic Analysis (LSA)    | 85.1 (83.1, 87.0)        |
| Random Forest (RF)                | 87.1 (83.8, 90.4)        |
| Naive Bayes SVM (NB-SVM)          | <b>87.6</b> (85.2, 90.1) |













**Patches** 

#### Chest Strap

#### Sensors / Devices





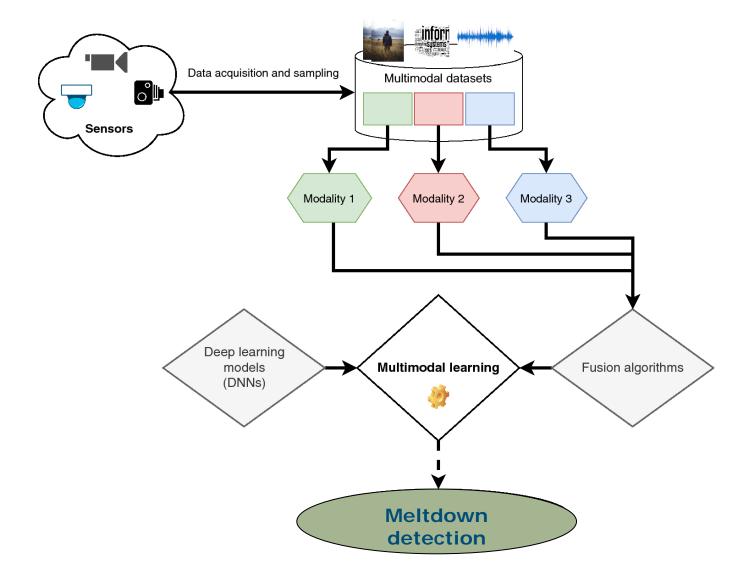
15







Eye Gaze Tracker




NAO Robots





#### Multimodal Analysis: General Idea







16

#### Thank You!

Any Questions?

Mufti.Mahmud@ntu.ac.uk



